Compare commits

..

No commits in common. "8d2261e245a96b1422c735f27860547e010620df" and "e6fa7175078aed5ebfe2989eebba3e7551a4c647" have entirely different histories.

4 changed files with 15 additions and 499 deletions

View File

@ -1,17 +0,0 @@
package Top;
import ECP5_RAM::*;
(* synthesize *)
module mkTop(ECP5_EBRCorePort#(Bit#(12), Bit#(8)));
let clk <- exposeCurrentClock;
let rstN <- exposeCurrentReset;
ECP5_EBRPortConfig cfg = defaultValue;
ECP5_EBRCore#(Bit#(12), Bit#(8), UInt#(12), UInt#(8)) ram <- mkECP5_EBRCoreByte(cfg, cfg);
method put = ram.portA.put;
method read = ram.portA.read;
endmodule
endpackage

View File

@ -1,247 +0,0 @@
package ECP5_RAM;
import Printf::*;
// ECP5_EBRWriteMode specifies what the EBR outputs on a write cycle.
typedef enum {
// In Normal mode, the EBR's output on a write cycle is undefined.
Normal,
// In WriteThrough mode, the EBR outputs the new value at the
// written address.
WriteThrough,
// In ReadBeforeWrite mode, the EBR outputs the prior value of the
// written address. ReadBeforeWrite is only available on 9 and 18
// bit ports.
ReadBeforeWrite
} ECP5_EBRWriteMode deriving (Bits, Eq);
// ECP5_EBRPortConfig is the static configuration of an EBR port.
typedef struct {
Clock clk;
Reset rstN;
// By default, ECP5 EBRs only register the input address and write
// data, giving a 1-cycle latency for operations. If
// registered_output is true, the output value is also registered,
// resulting in 2 cycles of latency but shorter datapaths.
Bool registered_output;
// chip_select_addr is the chip address of this EBR port. put
// method invocations whose select argument don't match this
// address are ignored.
UInt#(3) chip_select_addr;
// write_mode specifies the output's behavior for write operations.
ECP5_EBRWriteMode write_mode;
} ECP5_EBRPortConfig;
instance DefaultValue#(ECP5_EBRPortConfig);
defaultValue = ECP5_EBRPortConfig{
clk: noClock,
rstN: noReset,
registered_output: False,
chip_select_addr: 0,
write_mode: Normal
};
endinstance
(* always_ready *)
interface ECP5_EBRCoreInnerPort;
// Put starts a read or write operation, if select's value matches
// the port's configured chip_select_addr.
method Action put(UInt#(3) select, Bool write, Bit#(14) address, Bit#(18) data);
// Read returns the value on the EBR's output port. The output
// value is only defined when the read follows a put with the
// correct number of latency cycles for the port's configuration.
method Bit#(18) read();
endinterface
interface ECP5_EBRCoreInner;
interface ECP5_EBRCoreInnerPort portA;
interface ECP5_EBRCoreInnerPort portB;
endinterface
// mkECP5_EBRCoreInner instantiates an ECP5 EBR primitive with the
// given configuration. The returned interface has full-width I/O
// ports
import "BVI" ECP5_RAM =
module mkECP5_EBRCoreInner#(ECP5_EBRPortConfig port_a,
ECP5_EBRPortConfig port_b,
Integer portA_width,
Integer portB_width)
(ECP5_EBRCoreInner);
default_clock no_clock;
default_reset no_reset;
input_clock portA_clk(CLKA, (* unused *)CLKA_GATE) = port_a.clk;
input_reset portA_rstN(RSTA) clocked_by(portA_clk) = port_a.rstN;
input_clock portB_clk(CLKB, (* unused *)CLKB_GATE) = port_b.clk;
input_reset portB_rstN(RSTB) clocked_by(portB_clk) = port_b.rstN;
parameter DATA_WIDTH_A = portA_width;
parameter REGMODE_A = port_a.registered_output ? "OUTREG" : "NOREG";
parameter CSDECODE_A = "0b000"; //$format("0b%b", port_a.chip_select_addr);
parameter WRITEMODE_A = case (port_a.write_mode) matches
Normal: "NORMAL";
WriteThrough: "WRITETHROUGH";
ReadBeforeWrite: "READBEFOREWRITE";
endcase;
parameter DATA_WIDTH_B = portB_width;
parameter REGMODE_B = port_b.registered_output ? "OUTREG" : "NOREG";
parameter CSDECODE_B = "0b000"; //$format("0b%b", port_b.chip_select_addr);
parameter WRITEMODE_B = case (port_b.write_mode) matches
Normal: "NORMAL";
WriteThrough: "WRITETHROUGH";
ReadBeforeWrite: "READBEFOREWRITE";
endcase;
port OCEA = True;
port OCEB = True;
interface ECP5_EBRCoreInnerPort portA;
method put((*reg*)CSA, (*reg*)WEA, (*reg*)ADA, (*reg*)DIA) enable(CEA) clocked_by(portA_clk) reset_by(portA_rstN);
method DOA read() clocked_by(portA_clk) reset_by(portA_rstN);
endinterface
interface ECP5_EBRCoreInnerPort portB;
method put((*reg*)CSB, (*reg*)WEB, (*reg*)ADB, (*reg*)DIB) enable(CEB) clocked_by(portB_clk) reset_by(portB_rstN);
method DOB read() clocked_by(portB_clk) reset_by(portB_rstN);
endinterface
schedule (portA.read) CF (portA.read, portA.put);
schedule (portA.put) C (portA.put);
schedule (portB.read) CF (portB.read, portB.put);
schedule (portB.put) C (portB.put);
endmodule : mkECP5_EBRCoreInner
module checkSizes#(addr a, data d, String module_name, String port_name)(Empty)
provisos (Bits#(addr, addr_sz),
Bits#(data, data_sz));
let data_sz = valueOf(data_sz);
let addr_sz = valueOf(addr_sz);
let addr_max = case (data_sz) matches
1: 14;
2: 13;
4: 12;
9: 11;
18: 10;
default: error(sprintf("invalid data width %d for port, must be one of 1,2,4,9,18", data_sz));
endcase;
if (addr_sz > addr_max) begin
addr dummy = ?;
errorM(sprintf("The address type for port %s of %s is wider than the hardware can implement. "+
"Address type %s has %d bits, maximum is %d",
port_name, module_name,
printType(typeOf(dummy)),
addr_sz,
addr_max));
end
endmodule
// ECP5_EBRCorePort is the raw interface to one port of an ECP5 EBR
// memory block.
//
// The port has no implicit conditions, it is the caller's
// responsibility to wait the correct number of cycles after a put()
// before capturing data with read(). The caller must wait 1 cycle for
// unregistered ports, and 2 cycles for registered ports. When invoked
// at other times, read() returns an unspecified arbitrary value.
interface ECP5_EBRCorePort#(type addr, type data);
method Action put(UInt#(3) chip_select, Bool write, addr address, data datain);
method data read();
endinterface
// ECP5_EBRCore is the raw interface to an ECP5 EBR memory block.
//
// The ports have no implicit conditions, the caller must wait the
// correct number of latency cycles to get valid data.
//
// It is the caller's responsibility to enforce synchronization
// between the ports, as specified in Lattice Technical Note 02204:
// the two ports must not issue concurrent writes to the same address,
// or a write concurrent with a read of the same address. If the two
// ports are being operated from different clock domains, the caller
// must implement appropriate synchronization to ensure that no
// read-during-write or write-during-write races occur.
interface ECP5_EBRCore#(type portA_addr, type portA_data, type portB_addr, type portB_data);
interface ECP5_EBRCorePort#(portA_addr, portA_data) portA;
interface ECP5_EBRCorePort#(portB_addr, portB_data) portB;
endinterface
// mkECP5_EBRCore instantiates an ECP5 EBR memory primitive with the
// given configuration. This memory has no implicit or explicit
// conditions, the caller is responsible for upholding the primitive's
// timing and synchronization requirements.
module mkECP5_EBRCore#(ECP5_EBRPortConfig port_a,
ECP5_EBRPortConfig port_b)
(ECP5_EBRCore#(addr_a, data_a, addr_b, data_b))
provisos (Bits#(addr_a, addr_sz_a),
Bits#(data_a, data_sz_a),
Bits#(addr_b, addr_sz_b),
Bits#(data_b, data_sz_b),
Add#(addr_a_pad, addr_sz_a, 14),
Add#(data_a_pad, data_sz_a, 18),
Add#(addr_b_pad, addr_sz_b, 14),
Add#(data_b_pad, data_sz_b, 18));
checkSizes(addr_a ' (?), data_a ' (?), "mkECP5_EBRCore", "A");
checkSizes(addr_b ' (?), data_b ' (?), "mkECP5_EBRCore", "B");
let inner <- mkECP5_EBRCoreInner(port_a, port_b, valueOf(data_sz_a), valueOf(data_sz_b));
interface ECP5_EBRCorePort portA;
method Action put(UInt#(3) chip_select, Bool write, addr_a address, data_a datain);
inner.portA.put(chip_select, write, zeroExtend(pack(address)), zeroExtend(pack(datain)));
endmethod
method data_a read();
return unpack(truncate(inner.portA.read()));
endmethod
endinterface
interface ECP5_EBRCorePort portB;
method Action put(UInt#(3) chip_select, Bool write, addr_b address, data_b datain);
inner.portB.put(chip_select, write, zeroExtend(pack(address)), zeroExtend(pack(datain)));
endmethod
method data_b read();
return unpack(truncate(inner.portB.read()));
endmethod
endinterface
endmodule
module mkECP5_EBRCoreByte#(ECP5_EBRPortConfig port_a,
ECP5_EBRPortConfig port_b)
(ECP5_EBRCore#(addr_a, data_a, addr_b, data_b))
provisos (Bits#(addr_a, 12),
Bits#(data_a, 8),
Bits#(addr_b, 12),
Bits#(data_b, 8));
let ebr1 <- mkECP5_EBRCore(port_a, port_b);
let ebr2 <- mkECP5_EBRCore(port_a, port_b);
interface ECP5_EBRCorePort portA;
method Action put(UInt#(3) chip_select, Bool write, addr_a address, data_a datain);
let data_bits = pack(datain);
ebr1.portA.put(chip_select, write, address, data_bits[7:4]);
ebr2.portA.put(chip_select, write, address, data_bits[3:0]);
endmethod
method data_a read();
return unpack({ebr1.portA.read(), ebr2.portA.read});
endmethod
endinterface
interface ECP5_EBRCorePort portB;
method Action put(UInt#(3) chip_select, Bool write, addr_b address, data_b datain);
let data_bits = pack(datain);
ebr1.portB.put(chip_select, write, address, data_bits[7:4]);
ebr2.portB.put(chip_select, write, address, data_bits[3:0]);
endmethod
method data_b read();
return unpack({ebr1.portB.read(), ebr2.portB.read});
endmethod
endinterface
endmodule
endpackage

View File

@ -1,182 +0,0 @@
module ECP5_RAM(CLKA,
CEA,
OCEA,
WEA,
DIA,
ADA,
CSA,
RSTA,
DOA,
CLKB,
CEB,
OCEB,
WEB,
DIB,
ADB,
CSB,
RSTB,
DOB);
parameter GSR = "AUTO";
parameter RESETMODE = "SYNC";
parameter ASYNC_RESET_RELEASE = "SYNC";
parameter DATA_WIDTH_A = 18;
parameter REGMODE_A = "NOREG";
parameter WRITEMODE_A = "NORMAL";
parameter CSDECODE_A = "0b000";
parameter DATA_WIDTH_B = 18;
parameter REGMODE_B = "NOREG";
parameter WRITEMODE_B = "NORMAL";
parameter CSDECODE_B = "0b000";
input CLKA;
input CEA;
input OCEA;
input WEA;
input [17:0] DIA;
input [13:0] ADA;
input [2:0] CSA;
input RSTA;
output [17:0] DOA;
input CLKB;
input CEB;
input OCEB;
input WEB;
input [17:0] DIB;
input [13:0] ADB;
input [2:0] CSB;
input RSTB;
output [17:0] DOB;
DP16KD#(.GSR(GSR),
.RESETMODE(RESETMODE),
.ASYNC_RESET_RELEASE(ASYNC_RESET_RELEASE),
.DATA_WIDTH_A(DATA_WIDTH_A),
.REGMODE_A(REGMODE_A),
.WRITEMODE_A(WRITEMODE_A),
.CSDECODE_A(CSDECODE_A),
.DATA_WIDTH_B(DATA_WIDTH_B),
.REGMODE_B(REGMODE_B),
.WRITEMODE_B(WRITEMODE_B),
.CSDECODE_B(CSDECODE_B)) ram(.CLKA(CLKA),
.CEA(CEA),
.OCEA(OCEA),
.WEA(WEA),
.DIA17(DIA[17]),
.DIA16(DIA[16]),
.DIA15(DIA[15]),
.DIA14(DIA[14]),
.DIA13(DIA[13]),
.DIA12(DIA[12]),
.DIA11(DIA[11]),
.DIA10(DIA[10]),
.DIA9(DIA[9]),
.DIA8(DIA[8]),
.DIA7(DIA[7]),
.DIA6(DIA[6]),
.DIA5(DIA[5]),
.DIA4(DIA[4]),
.DIA3(DIA[3]),
.DIA2(DIA[2]),
.DIA1(DIA[1]),
.DIA0(DIA[0]),
.ADA13(ADA[13]),
.ADA12(ADA[12]),
.ADA11(ADA[11]),
.ADA10(ADA[10]),
.ADA9(ADA[9]),
.ADA8(ADA[8]),
.ADA7(ADA[7]),
.ADA6(ADA[6]),
.ADA5(ADA[5]),
.ADA4(ADA[4]),
.ADA3(ADA[3]),
.ADA2(ADA[2]),
.ADA1(ADA[1]),
.ADA0(ADA[0]),
.CSA2(CSA[2]),
.CSA1(CSA[1]),
.CSA0(CSA[0]),
.RSTA(RSTA),
.DOA17(DOA[17]),
.DOA16(DOA[16]),
.DOA15(DOA[15]),
.DOA14(DOA[14]),
.DOA13(DOA[13]),
.DOA12(DOA[12]),
.DOA11(DOA[11]),
.DOA10(DOA[10]),
.DOA9(DOA[9]),
.DOA8(DOA[8]),
.DOA7(DOA[7]),
.DOA6(DOA[6]),
.DOA5(DOA[5]),
.DOA4(DOA[4]),
.DOA3(DOA[3]),
.DOA2(DOA[2]),
.DOA1(DOA[1]),
.DOA0(DOA[0]),
.CLKB(CLKB),
.CEB(CEB),
.OCEB(OCEB),
.WEB(WEB),
.DIB17(DIB[17]),
.DIB16(DIB[16]),
.DIB15(DIB[15]),
.DIB14(DIB[14]),
.DIB13(DIB[13]),
.DIB12(DIB[12]),
.DIB11(DIB[11]),
.DIB10(DIB[10]),
.DIB9(DIB[9]),
.DIB8(DIB[8]),
.DIB7(DIB[7]),
.DIB6(DIB[6]),
.DIB5(DIB[5]),
.DIB4(DIB[4]),
.DIB3(DIB[3]),
.DIB2(DIB[2]),
.DIB1(DIB[1]),
.DIB0(DIB[0]),
.ADB13(ADB[13]),
.ADB12(ADB[12]),
.ADB11(ADB[11]),
.ADB10(ADB[10]),
.ADB9(ADB[9]),
.ADB8(ADB[8]),
.ADB7(ADB[7]),
.ADB6(ADB[6]),
.ADB5(ADB[5]),
.ADB4(ADB[4]),
.ADB3(ADB[3]),
.ADB2(ADB[2]),
.ADB1(ADB[1]),
.ADB0(ADB[0]),
.CSA2(CSA[2]),
.CSA1(CSA[1]),
.CSA0(CSA[0]),
.RSTB(RSTA),
.DOB17(DOB[17]),
.DOB16(DOB[16]),
.DOB15(DOB[15]),
.DOB14(DOB[14]),
.DOB13(DOB[13]),
.DOB12(DOB[12]),
.DOB11(DOB[11]),
.DOB10(DOB[10]),
.DOB9(DOB[9]),
.DOB8(DOB[8]),
.DOB7(DOB[7]),
.DOB6(DOB[6]),
.DOB5(DOB[5]),
.DOB4(DOB[4]),
.DOB3(DOB[3]),
.DOB2(DOB[2]),
.DOB1(DOB[1]),
.DOB0(DOB[0]));
endmodule

View File

@ -74,86 +74,49 @@ def expand_test_target(target):
else:
raise ValueError(f"Unknown target type {t}")
def phase(name):
print("")
print("*"*(len(name)+6))
print(f"** {name} **")
print("*"*(len(name)+6))
print("")
@task
def build(c, target="."):
phase("Compile Bluespec")
verilog_files = []
for target in expand_build_target(target):
out_info, out_verilog, out_bsc = ensure_build_dirs(target, "info", "verilog", "bsc")
print(f"Building {target}")
c.run(f"bsc -aggressive-conditions -check-assert -u -verilog -info-dir {out_info} -vdir {out_verilog} -bdir {out_bsc} -p {target.parent}:lib:%/Libraries -show-module-use -show-compiles {target}")
module_name = Path(f"mk{target.stem}")
verilog_files.append(out_verilog / module_name.with_suffix(".v"))
with open(out_verilog / module_name.with_suffix(".use")) as f:
verilog_files.extend(find_verilog_modules(c, f.read().splitlines()))
print("\nVerilog files for synthesis:")
for v in verilog_files:
print(" "+str(v))
return verilog_files
@task
def synth(c, target):
target = resolve_synth_target(target)
out_info, out_verilog, out_bsc, out_yosys, out_nextpnr = ensure_build_dirs(target, "info", "verilog", "bsc", "yosys", "nextpnr")
pin_map = target.parent / "pin_map.lpf"
if not pin_map.is_file():
raise ArgumentError(f"Pin mapping {pin_map} not found")
module_name = Path(f"mk{target.stem}")
verilog_files = build(c, target)
out_info, out_verilog, out_bsc, out_yosys, out_nextpnr = ensure_build_dirs(target, "info", "verilog", "bsc", "yosys", "nextpnr")
build(c, target)
verilog_files = [out_verilog / module_name.with_suffix(".v")]
with open(out_verilog / module_name.with_suffix(".use")) as f:
verilog_files.extend(find_verilog_modules(c, f.read().splitlines()))
phase("Logic synthesis")
yosys_script = out_yosys / "script.ys"
yosys_json = out_yosys / module_name.with_suffix(".json")
yosys_report = out_yosys / module_name.with_suffix(".stats")
yosys_log = out_yosys / module_name.with_suffix(".log")
yosys_preprocessed = out_yosys / module_name.with_suffix(".v")
yosys_compiled = out_yosys / f"{module_name.stem}_compiled.v"
with open(yosys_script, "w", encoding="UTF-8") as f:
f.write(dedent(f"""\
read_verilog -sv -defer {' '.join(str(f) for f in verilog_files)}
hierarchy -top {module_name}
synth_ecp5 -top {module_name} -run :map_ram
write_verilog -sv {yosys_preprocessed}
synth_ecp5 -run map_ram: -json {yosys_json}
write_verilog -sv {yosys_compiled}
synth_ecp5 -top {module_name} -json {yosys_json}
tee -o {yosys_report} stat
"""))
c.run(f"yosys -q -L {yosys_log} -T {yosys_script}")
with open(yosys_report) as f:
ls = f.readlines()[3:]
print("".join(ls))
print(f" JSON : {yosys_json}")
print(f" Log : {yosys_log}")
print(f" Flat : {yosys_preprocessed}")
print(f"Compiled : {yosys_compiled}")
print(f.read())
pin_map = target.parent / "pin_map.lpf"
if not pin_map.is_file():
print(f"WARNING: no pin map at {pin_map}, skipping place&route and bitstream generation")
return
phase("Place and route")
nextpnr_out = out_nextpnr / module_name.with_suffix(".pnr")
nextpnr_log = out_nextpnr / module_name.with_suffix(".log")
nextpnr_timing = out_nextpnr / module_name.with_suffix(".log")
out = c.run(f"nextpnr-ecp5 --85k --detailed-timing-report -l {nextpnr_log} --report {nextpnr_timing} --json {yosys_json} --lpf {pin_map} --package=CABGA381 --textcfg {nextpnr_out}") #, hide='stderr')
out = c.run(f"nextpnr-ecp5 --85k --detailed-timing-report --report {out_nextpnr / "timing.json"} --json {yosys_json} --lpf {pin_map} --package=CABGA381 --textcfg {nextpnr_out}", hide='stderr')
print_filtered_paragraphs(out.stderr, "Device utilization", "Critical path", common_prefix="Info: ")
print_filtered_paragraphs(out.stderr, "Device utilisation", "Critical path", "Max frequency", "Max delay", common_prefix="Info: ")
print(f" PNR : {nextpnr_out}")
print(f" Log : {nextpnr_log}")
print(f"Timing : {nextpnr_timing}")
phase("Bitstream generation")
bitstream = nextpnr_out.with_suffix(".bit")
c.run(f"ecppack {nextpnr_out} {bitstream}")
print(f"Wrote bitstream to {bitstream}")
@ -176,5 +139,4 @@ def test(c, target="."):
@task
def clean(c):
if Path("out").is_dir():
shutil.rmtree("out")
shutil.rmtree("out")