gary/vram/VRAM.bsv

182 lines
6.0 KiB
Plaintext
Raw Normal View History

package VRAM;
import GetPut::*;
import ClientServer::*;
import DReg::*;
import BRAM::*;
import Vector::*;
import FIFOF::*;
import SpecialFIFOs::*;
import DelayLine::*;
import ECP5_RAM::*;
typedef UInt#(17) VRAMAddr;
typedef Bit#(8) VRAMData;
// Each byte RAM we build below can address 4096 bytes, which is 12
// address bits.
typedef UInt#(12) ByteAddr;
// The difference between ByteRAM_Addr and VRAMAddr is the chip
// select ID.
typedef UInt#(5) ChipAddr;
// ByteRAM is two EBRs glued together to make a whole-byte memory.
typedef EBR#(ByteAddr, VRAMData, ByteAddr, VRAMData) ByteRAM;
// mkByteRAM glues two ECP5 EBRs together to make a 4096x8b memory
// block. Like the underlying ECP5 EBRs, callers must bring their own
// flow control to read out responses one cycle after putting a read
// request.
module mkByteRAM(UInt#(3) chip_addr, ByteRAM ifc);
EBRPortConfig cfg = defaultValue;
cfg.chip_select_addr = chip_addr;
EBR#(ByteAddr, Bit#(4), ByteAddr, Bit#(4)) upper <- mkEBRCore(cfg, cfg);
EBR#(ByteAddr, Bit#(4), ByteAddr, Bit#(4)) lower <- mkEBRCore(cfg, cfg);
interface EBRPort portA;
method Action put(UInt#(3) chip_select, Bool write, ByteAddr addr, VRAMData data_in);
upper.portA.put(chip_select, write, addr, truncate(data_in>>4));
lower.portA.put(chip_select, write, addr, truncate(data_in));
endmethod
method VRAMData read();
return (extend(upper.portA.read())<<4) | (extend(lower.portA.read()));
endmethod
endinterface
interface EBRPort portB;
method Action put(UInt#(3) chip_select, Bool write, ByteAddr addr, VRAMData data_in);
upper.portB.put(chip_select, write, addr, truncate(data_in>>4));
lower.portB.put(chip_select, write, addr, truncate(data_in));
endmethod
method VRAMData read();
return (extend(upper.portB.read())<<4) | (extend(lower.portB.read()));
endmethod
endinterface
endmodule : mkByteRAM
module mkByteRAMArray(Integer num_chips, ByteRAM ifc);
if (num_chips > 8)
error("mkByteRAMArray can only array 8 raw ByteRAMs");
ByteRAM blocks[num_chips];
for (Integer i=0; i<num_chips; i=i+1)
blocks[i] <- mkByteRAM(fromInteger(i));
DelayLine#(UInt#(3)) read_chip_A <- mkDelayLine(1);
DelayLine#(UInt#(3)) read_chip_B <- mkDelayLine(1);
interface EBRPort portA;
method Action put(UInt#(3) chip_select, Bool write, ByteAddr addr, VRAMData data_in);
for (Integer i=0; i<num_chips; i=i+1)
blocks[i].portA.put(chip_select, write, addr, data_in);
if (write)
read_chip_A <= chip_select;
endmethod
method VRAMData read();
if (read_chip_A.ready)
if (read_chip_A <= fromInteger(num_chips-1))
return blocks[read_chip_A].portA.read();
else
return 0;
else
return 0;
endmethod
endinterface
interface EBRPort portB;
method Action put(UInt#(3) chip_select, Bool write, ByteAddr addr, VRAMData data_in);
for (Integer i=0; i<num_chips; i=i+1)
blocks[i].portB.put(chip_select, write, addr, data_in);
if (write)
read_chip_B <= chip_select;
endmethod
method VRAMData read();
if (read_chip_B.ready)
if (read_chip_B <= fromInteger(num_chips-1))
return blocks[read_chip_B].portB.read();
else
return 0;
else
return 0;
endmethod
endinterface
endmodule
typedef struct {
VRAMAddr addr;
Maybe#(VRAMData) data;
} VRAMRequest deriving (Bits, Eq);
typedef struct {
VRAMData data;
} VRAMResponse deriving (Bits, Eq);
typedef Server#(VRAMRequest, VRAMResponse) VRAMServer;
typedef Client#(VRAMRequest, VRAMResponse) VRAMClient;
interface VRAM;
interface VRAMServer portA;
interface VRAMServer portB;
endinterface
module mkVRAM(Integer num_4kB_blocks, VRAM ifc);
if (num_4kB_blocks > 32)
error("maximum number of blocks is 32 (128KiB)");
UInt#(TAdd#(SizeOf#(VRAMAddr), 1)) max_request_addr = fromInteger((4096 * num_4kB_blocks));
function Tuple2#(ChipAddr, ByteAddr) split_addr(VRAMAddr a);
UInt#(TAdd#(SizeOf#(VRAMAddr), 1)) expanded = extend(a);
VRAMAddr wrapped = truncate(expanded % max_request_addr);
match {.chip, .off} = split(pack(wrapped));
return tuple2(unpack(chip), unpack(off));
endfunction
ByteRAM blocks[num_4kB_blocks];
for (Integer i=0; i<num_4kB_blocks; i=i+1)
blocks[i] <- mkByteRAM(0);
Reg#(Maybe#(ChipAddr)) inflight_A[2] <- mkCReg(2, tagged Invalid);
Reg#(Maybe#(ChipAddr)) inflight_B[2] <- mkCReg(2, tagged Invalid);
interface VRAMServer portA;
interface Put request;
method Action put(VRAMRequest req) if (inflight_A[1] matches tagged Invalid);
match {.chip, .off} = split_addr(req.addr);
blocks[chip].portA.put(0, isValid(req.data), off, fromMaybe(0, req.data));
if (!isValid(req.data))
inflight_A[1] <= tagged Valid chip;
endmethod
endinterface
interface Get response;
method ActionValue#(VRAMResponse) get() if (inflight_A[0] matches tagged Valid .chip);
inflight_A[0] <= tagged Invalid;
return VRAMResponse{data: blocks[chip].portA.read()};
endmethod
endinterface
endinterface
interface VRAMServer portB;
interface Put request;
method Action put(VRAMRequest req) if (inflight_B[1] matches tagged Invalid);
match {.chip, .off} = split_addr(req.addr);
blocks[chip].portB.put(0, isValid(req.data), off, fromMaybe(0, req.data));
if (!isValid(req.data))
inflight_B[1] <= tagged Valid chip;
endmethod
endinterface
interface Get response;
method ActionValue#(VRAMResponse) get() if (inflight_B[0] matches tagged Valid .chip);
inflight_B[0] <= tagged Invalid;
return VRAMResponse{data: blocks[chip].portB.read()};
endmethod
endinterface
endinterface
endmodule
endpackage