vram/VRAM: early VRAM implementation
Only checked up to mkByteRAMArray, main VRAM still WIP
This commit is contained in:
parent
7560199251
commit
f7cb4b6ba2
|
@ -0,0 +1,38 @@
|
|||
package Top;
|
||||
|
||||
import VRAM::*;
|
||||
import ECP5_RAM::*;
|
||||
import TriState::*;
|
||||
|
||||
(* always_enabled *)
|
||||
interface Top;
|
||||
method Action phi2(bit v);
|
||||
method Action we(bit we);
|
||||
method Action addr(UInt#(24) addr);
|
||||
interface InOut#(Bit#(8)) data();
|
||||
endinterface
|
||||
|
||||
(* synthesize *)
|
||||
module mkTop(Top);
|
||||
Reg#(PortReq) reqA <- mkRegU();
|
||||
Reg#(VRAMData) respA <- mkRegU();
|
||||
|
||||
let _ret <- mkByteRAMArray(8);
|
||||
|
||||
rule putA;
|
||||
_ret.portA.put(reqA.chip_select, reqA.write, reqA.addr, reqA.datain);
|
||||
endrule
|
||||
|
||||
rule getA;
|
||||
respA <= _ret.portA.read();
|
||||
endrule
|
||||
|
||||
method portA_read = respA._read;
|
||||
method Action portA_put(cs, w, a, d);
|
||||
reqA <= PortReq{chip_select: cs, write: w, addr: a, datain: d};
|
||||
endmethod
|
||||
method portB_read = _ret.portB.read;
|
||||
method portB_put = _ret.portB.put;
|
||||
endmodule
|
||||
|
||||
endpackage
|
|
@ -0,0 +1,181 @@
|
|||
package VRAM;
|
||||
|
||||
import GetPut::*;
|
||||
import ClientServer::*;
|
||||
import DReg::*;
|
||||
import BRAM::*;
|
||||
import Vector::*;
|
||||
import FIFOF::*;
|
||||
import SpecialFIFOs::*;
|
||||
|
||||
import DelayLine::*;
|
||||
import ECP5_RAM::*;
|
||||
|
||||
typedef UInt#(17) VRAMAddr;
|
||||
|
||||
typedef Bit#(8) VRAMData;
|
||||
|
||||
// Each byte RAM we build below can address 4096 bytes, which is 12
|
||||
// address bits.
|
||||
typedef UInt#(12) ByteAddr;
|
||||
|
||||
// The difference between ByteRAM_Addr and VRAMAddr is the chip
|
||||
// select ID.
|
||||
typedef UInt#(5) ChipAddr;
|
||||
|
||||
// ByteRAM is two EBRs glued together to make a whole-byte memory.
|
||||
typedef EBR#(ByteAddr, VRAMData, ByteAddr, VRAMData) ByteRAM;
|
||||
|
||||
// mkByteRAM glues two ECP5 EBRs together to make a 4096x8b memory
|
||||
// block. Like the underlying ECP5 EBRs, callers must bring their own
|
||||
// flow control to read out responses one cycle after putting a read
|
||||
// request.
|
||||
module mkByteRAM(UInt#(3) chip_addr, ByteRAM ifc);
|
||||
EBRPortConfig cfg = defaultValue;
|
||||
cfg.chip_select_addr = chip_addr;
|
||||
EBR#(ByteAddr, Bit#(4), ByteAddr, Bit#(4)) upper <- mkEBRCore(cfg, cfg);
|
||||
EBR#(ByteAddr, Bit#(4), ByteAddr, Bit#(4)) lower <- mkEBRCore(cfg, cfg);
|
||||
|
||||
interface EBRPort portA;
|
||||
method Action put(UInt#(3) chip_select, Bool write, ByteAddr addr, VRAMData data_in);
|
||||
upper.portA.put(chip_select, write, addr, truncate(data_in>>4));
|
||||
lower.portA.put(chip_select, write, addr, truncate(data_in));
|
||||
endmethod
|
||||
|
||||
method VRAMData read();
|
||||
return (extend(upper.portA.read())<<4) | (extend(lower.portA.read()));
|
||||
endmethod
|
||||
endinterface
|
||||
|
||||
interface EBRPort portB;
|
||||
method Action put(UInt#(3) chip_select, Bool write, ByteAddr addr, VRAMData data_in);
|
||||
upper.portB.put(chip_select, write, addr, truncate(data_in>>4));
|
||||
lower.portB.put(chip_select, write, addr, truncate(data_in));
|
||||
endmethod
|
||||
|
||||
method VRAMData read();
|
||||
return (extend(upper.portB.read())<<4) | (extend(lower.portB.read()));
|
||||
endmethod
|
||||
endinterface
|
||||
endmodule : mkByteRAM
|
||||
|
||||
module mkByteRAMArray(Integer num_chips, ByteRAM ifc);
|
||||
if (num_chips > 8)
|
||||
error("mkByteRAMArray can only array 8 raw ByteRAMs");
|
||||
|
||||
ByteRAM blocks[num_chips];
|
||||
for (Integer i=0; i<num_chips; i=i+1)
|
||||
blocks[i] <- mkByteRAM(fromInteger(i));
|
||||
|
||||
DelayLine#(UInt#(3)) read_chip_A <- mkDelayLine(1);
|
||||
DelayLine#(UInt#(3)) read_chip_B <- mkDelayLine(1);
|
||||
|
||||
interface EBRPort portA;
|
||||
method Action put(UInt#(3) chip_select, Bool write, ByteAddr addr, VRAMData data_in);
|
||||
for (Integer i=0; i<num_chips; i=i+1)
|
||||
blocks[i].portA.put(chip_select, write, addr, data_in);
|
||||
if (write)
|
||||
read_chip_A <= chip_select;
|
||||
endmethod
|
||||
method VRAMData read();
|
||||
if (read_chip_A.ready)
|
||||
if (read_chip_A <= fromInteger(num_chips-1))
|
||||
return blocks[read_chip_A].portA.read();
|
||||
else
|
||||
return 0;
|
||||
else
|
||||
return 0;
|
||||
endmethod
|
||||
endinterface
|
||||
|
||||
interface EBRPort portB;
|
||||
method Action put(UInt#(3) chip_select, Bool write, ByteAddr addr, VRAMData data_in);
|
||||
for (Integer i=0; i<num_chips; i=i+1)
|
||||
blocks[i].portB.put(chip_select, write, addr, data_in);
|
||||
if (write)
|
||||
read_chip_B <= chip_select;
|
||||
endmethod
|
||||
method VRAMData read();
|
||||
if (read_chip_B.ready)
|
||||
if (read_chip_B <= fromInteger(num_chips-1))
|
||||
return blocks[read_chip_B].portB.read();
|
||||
else
|
||||
return 0;
|
||||
else
|
||||
return 0;
|
||||
endmethod
|
||||
endinterface
|
||||
endmodule
|
||||
|
||||
typedef struct {
|
||||
VRAMAddr addr;
|
||||
Maybe#(VRAMData) data;
|
||||
} VRAMRequest deriving (Bits, Eq);
|
||||
|
||||
typedef struct {
|
||||
VRAMData data;
|
||||
} VRAMResponse deriving (Bits, Eq);
|
||||
|
||||
typedef Server#(VRAMRequest, VRAMResponse) VRAMServer;
|
||||
typedef Client#(VRAMRequest, VRAMResponse) VRAMClient;
|
||||
|
||||
interface VRAM;
|
||||
interface VRAMServer portA;
|
||||
interface VRAMServer portB;
|
||||
endinterface
|
||||
|
||||
module mkVRAM(Integer num_4kB_blocks, VRAM ifc);
|
||||
if (num_4kB_blocks > 32)
|
||||
error("maximum number of blocks is 32 (128KiB)");
|
||||
UInt#(TAdd#(SizeOf#(VRAMAddr), 1)) max_request_addr = fromInteger((4096 * num_4kB_blocks));
|
||||
|
||||
function Tuple2#(ChipAddr, ByteAddr) split_addr(VRAMAddr a);
|
||||
UInt#(TAdd#(SizeOf#(VRAMAddr), 1)) expanded = extend(a);
|
||||
VRAMAddr wrapped = truncate(expanded % max_request_addr);
|
||||
match {.chip, .off} = split(pack(wrapped));
|
||||
return tuple2(unpack(chip), unpack(off));
|
||||
endfunction
|
||||
|
||||
ByteRAM blocks[num_4kB_blocks];
|
||||
for (Integer i=0; i<num_4kB_blocks; i=i+1)
|
||||
blocks[i] <- mkByteRAM(0);
|
||||
|
||||
Reg#(Maybe#(ChipAddr)) inflight_A[2] <- mkCReg(2, tagged Invalid);
|
||||
Reg#(Maybe#(ChipAddr)) inflight_B[2] <- mkCReg(2, tagged Invalid);
|
||||
|
||||
interface VRAMServer portA;
|
||||
interface Put request;
|
||||
method Action put(VRAMRequest req) if (inflight_A[1] matches tagged Invalid);
|
||||
match {.chip, .off} = split_addr(req.addr);
|
||||
blocks[chip].portA.put(0, isValid(req.data), off, fromMaybe(0, req.data));
|
||||
if (!isValid(req.data))
|
||||
inflight_A[1] <= tagged Valid chip;
|
||||
endmethod
|
||||
endinterface
|
||||
interface Get response;
|
||||
method ActionValue#(VRAMResponse) get() if (inflight_A[0] matches tagged Valid .chip);
|
||||
inflight_A[0] <= tagged Invalid;
|
||||
return VRAMResponse{data: blocks[chip].portA.read()};
|
||||
endmethod
|
||||
endinterface
|
||||
endinterface
|
||||
|
||||
interface VRAMServer portB;
|
||||
interface Put request;
|
||||
method Action put(VRAMRequest req) if (inflight_B[1] matches tagged Invalid);
|
||||
match {.chip, .off} = split_addr(req.addr);
|
||||
blocks[chip].portB.put(0, isValid(req.data), off, fromMaybe(0, req.data));
|
||||
if (!isValid(req.data))
|
||||
inflight_B[1] <= tagged Valid chip;
|
||||
endmethod
|
||||
endinterface
|
||||
interface Get response;
|
||||
method ActionValue#(VRAMResponse) get() if (inflight_B[0] matches tagged Valid .chip);
|
||||
inflight_B[0] <= tagged Invalid;
|
||||
return VRAMResponse{data: blocks[chip].portB.read()};
|
||||
endmethod
|
||||
endinterface
|
||||
endinterface
|
||||
endmodule
|
||||
|
||||
endpackage
|
Loading…
Reference in New Issue