576 lines
23 KiB
Plaintext
576 lines
23 KiB
Plaintext
////////////////////////////////////////////////////////////
|
|
package ECP5_RAM;
|
|
|
|
import DReg::*;
|
|
import Printf::*;
|
|
import ToString::*;
|
|
import StmtFSM::*;
|
|
|
|
import DelayLine::*;
|
|
|
|
export EBRWriteMode(..);
|
|
export EBRPortConfig(..);
|
|
export EBRPort(..);
|
|
export EBR(..);
|
|
export mkEBRCore;
|
|
export mkEBR;
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// Configuration types
|
|
//
|
|
// The exported block RAMs in this package have one or more ports,
|
|
// where each port is independently configurable. Not all parameters
|
|
// are exposed, notably reset behavior is hardcoded to synchronous
|
|
// reset and release. This is purely because I don't yet understand
|
|
// Bluespec's reset semantics well enough to be confident in exposing
|
|
// async reset without messing it up.
|
|
//
|
|
// The exported EBRPortConfig type is internally expanded into an
|
|
// EBRPortConfig_Resolved. This expansion process resolves defaults,
|
|
// (e.g. assigning a default clock if none was provided), derives some
|
|
// additional values that implementations need (e.g. the widths of the
|
|
// data and address I/Os as regular integers), and checks the
|
|
// configuration for consistency errors (e.g. an address type larger
|
|
// than what the hardware can support).
|
|
|
|
// EBRWriteMode specifies an EBR port's output for a write operation,
|
|
// if any.
|
|
typedef enum {
|
|
// In Normal mode, write operations do not output a value.
|
|
Normal,
|
|
// In WriteThrough mode, write operations output the value that was
|
|
// written.
|
|
WriteThrough,
|
|
// In ReadBeforeWrite mode, write operations output the value that
|
|
// was overwritten. This mode is only available on 9-bit and 18-bit
|
|
// EBR configurations.
|
|
ReadBeforeWrite
|
|
} EBRWriteMode deriving (Bits, Eq);
|
|
|
|
// EBRPortConfig is the configuration of an EBR port.
|
|
typedef struct {
|
|
// clk, if specified, is the Clock to use for the port. If
|
|
// unspecified, uses the module's default clock.
|
|
Maybe#(Clock) clk;
|
|
// rstN, if specified, is the Reset to use for the port. If
|
|
// unspecified, uses the module's default reset.
|
|
Maybe#(Reset) rstN;
|
|
// Whether to register the output of the EBR port.
|
|
//
|
|
// EBR ports always register their inputs, to present predictable
|
|
// signals to the memory circuitry. Ports can optionally also
|
|
// enable an output register, which adds latency to operations but
|
|
// decouples the memory's internal latency from the logic connected
|
|
// to the output. This may allow designs to run at higher clock
|
|
// speeds, outweighing the added cycle overhead.
|
|
//
|
|
// With non-registered output, EBR operations have a latency of 1
|
|
// cycle. Registering the output increases that to 2 cycles. By
|
|
// default, the output is not registered.
|
|
Bool register_output;
|
|
// chip_select_addr is the port's chip select address. The port
|
|
// ignores put operations that don't provide a matching chip_select
|
|
// argument.
|
|
//
|
|
// This is intended to make it easier to construct larger memories
|
|
// out of multiple EBR ports: by configuring different chip
|
|
// addresses for each port, the inputs to the overall memory can be
|
|
// routed directly to all EBR ports, rather than having to provide
|
|
// your own address decoding and routing logic.
|
|
UInt#(3) chip_select_addr;
|
|
// write_mode specifies what the EBR port outputs for write
|
|
// operations. In the default Normal mode, write operations do not
|
|
// produce any output.
|
|
EBRWriteMode write_mode;
|
|
} EBRPortConfig deriving (Eq);
|
|
|
|
instance DefaultValue#(EBRPortConfig);
|
|
defaultValue = EBRPortConfig{
|
|
clk: defaultValue,
|
|
rstN: defaultValue,
|
|
register_output: False,
|
|
chip_select_addr: 0,
|
|
write_mode: Normal
|
|
};
|
|
endinstance
|
|
|
|
// EBRPortConfig_Resolved is an elaborated version of EBRPortConfig,
|
|
// with all defaults and overrides resolved to their concrete values,
|
|
// port widths made explicit and verified.
|
|
typedef struct {
|
|
// These fields are the same as in EBRPortConfig. If the port is
|
|
// not in use, they are tied to default values that avoid any logic
|
|
// or wires being generated outside of the EBR.
|
|
Clock clk;
|
|
Reset rstN;
|
|
Bool register_output;
|
|
UInt#(3) chip_select_addr;
|
|
EBRWriteMode write_mode;
|
|
|
|
// These are values derived by resolvePortCfg from an EBRPortConfig
|
|
// and other contextual information from a module
|
|
// instantiation. These are values that modules need to derive, so
|
|
// we derive them all once here instead of forcing each module to
|
|
// do so.
|
|
|
|
// enabled is whether the port is in use at all. Modules omit all
|
|
// glue logic and wiring for disabled ports, resulting in zero
|
|
// burden during synthesis (other than consuming an EBR primitive,
|
|
// but presumably you're using the other port still).
|
|
//
|
|
// Enabled is true if the memory's type for values is a non-zero
|
|
// number of bits. In particular, eanbled=False if the caller uses
|
|
// 'void' as the port's data type.
|
|
Bool enabled;
|
|
// addr_width is the bit width of addresses. resolvePortCfg ensures
|
|
// that it is less than or equal to the maximum address width that
|
|
// makes sense for data_width.
|
|
Integer addr_width;
|
|
// data_width is the bit width of input and output values at the
|
|
// primitive hardware layer. The data width exported from the
|
|
// wrapper types can be narrower. This value is always one of the
|
|
// valid values for the EBR primitive: 1, 2, 4, 9 or 18.
|
|
Integer data_width;
|
|
// write_outputs_data is whether write_mode is one of the modes
|
|
// where write operations output a value. Modules use this to
|
|
// generate the appropriate conditions for port reads.
|
|
Bool write_outputs_data;
|
|
// operation_latency is how many cycles elapse between put()
|
|
// executing to read() being ready. It is used to generate the
|
|
// appropriate conditions for port reads.
|
|
//
|
|
// Operation latency on enabled ports is 2 if the output is
|
|
// registered, or 1 for unregistered output. Disabled ports have 0
|
|
// latency, meaning no timing logic is needed.
|
|
Integer operation_latency;
|
|
// chip_select_addr_str is the string encoding of chip_select_addr
|
|
// that the EBR hardware primitive wants for its configuration
|
|
// parameter.
|
|
String chip_select_addr_str;
|
|
// write_mode_str is the string encoding of write_mode that hte EBR
|
|
// hardware primitive wants for its configuration parameter.
|
|
String write_mode_str;
|
|
// register_output_str is the string encoding of register_output
|
|
// that the EBR hardware primitive wants for its configuration
|
|
// parameter.
|
|
String register_output_str;
|
|
} EBRPortConfig_Resolved;
|
|
|
|
function EBRPortConfig_Resolved resolvePortCfg(String module_name, String port_name, addr a, data d, EBRPortConfig cfg, Clock defaultClk, Reset defaultRstN)
|
|
provisos (Bits#(addr, addr_sz),
|
|
Bits#(data, data_sz));
|
|
let addr_sz = valueOf(addr_sz);
|
|
let data_sz = valueOf(data_sz);
|
|
|
|
let data_hw_sz = 0;
|
|
if (data_sz > 18)
|
|
data_hw_sz = error(sprintf("invalid data width %d for %s port %s, must be 0..18 bits",
|
|
data_sz, module_name, port_name));
|
|
else if (data_sz > 9) data_hw_sz = 18;
|
|
else if (data_sz > 4) data_hw_sz = 9;
|
|
else if (data_sz > 2) data_hw_sz = 4;
|
|
else if (data_sz > 1) data_hw_sz = 2;
|
|
else if (data_sz > 0) data_hw_sz = 1;
|
|
|
|
let addr_max = case (data_hw_sz)
|
|
0: 0;
|
|
1: 14;
|
|
2: 13;
|
|
4: 12;
|
|
9: 11;
|
|
18: 10;
|
|
default: error("unreachable");
|
|
endcase;
|
|
|
|
let enabled = data_hw_sz != 0;
|
|
let ret = ?;
|
|
if (enabled)
|
|
ret = EBRPortConfig_Resolved{
|
|
enabled: True,
|
|
clk: cfg.clk matches tagged Valid .clk ? clk : defaultClk,
|
|
rstN: cfg.rstN matches tagged Valid .rstN ? rstN : defaultRstN,
|
|
addr_width: addr_sz,
|
|
data_width: data_hw_sz,
|
|
register_output: cfg.register_output,
|
|
chip_select_addr: cfg.chip_select_addr,
|
|
write_mode: cfg.write_mode,
|
|
write_outputs_data: cfg.write_mode != Normal,
|
|
operation_latency: cfg.register_output ? 2 : 1,
|
|
chip_select_addr_str: sprintf("0b%03b", cfg.chip_select_addr),
|
|
write_mode_str: case (cfg.write_mode) matches
|
|
Normal: "NORMAL";
|
|
WriteThrough: "WRITETHROUGH";
|
|
ReadBeforeWrite: "READBEFOREWRITE";
|
|
endcase,
|
|
register_output_str: cfg.register_output ? "OUTREG": "NOREG"
|
|
};
|
|
else
|
|
ret = EBRPortConfig_Resolved{
|
|
enabled: False,
|
|
clk: noClock,
|
|
rstN: noReset,
|
|
addr_width: 14,
|
|
data_width: 18,
|
|
register_output: False,
|
|
chip_select_addr: 0,
|
|
write_mode: Normal,
|
|
write_outputs_data: False,
|
|
operation_latency: 0,
|
|
chip_select_addr_str: "0b000",
|
|
write_mode_str: "NORMAL",
|
|
register_output_str: "NOREG"
|
|
};
|
|
if (addr_sz > addr_max) begin
|
|
addr dummy = ?;
|
|
ret = error(sprintf("The address type for port %s of %s is wider than the hardware can implement. "+
|
|
"Address type %s has %d bits, maximum is %d",
|
|
port_name, module_name,
|
|
printType(typeOf(dummy)),
|
|
addr_sz,
|
|
addr_max));
|
|
end
|
|
return ret;
|
|
endfunction
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// Exported interfaces
|
|
//
|
|
|
|
// EBRPort is a port of an EBR memory.
|
|
(* always_ready *)
|
|
interface EBRPort#(type addr, type data);
|
|
method Action put(UInt#(3) chip_select, Bool write, addr address, data datain);
|
|
method data read();
|
|
endinterface
|
|
|
|
// EBR is an EBR memory.
|
|
interface EBR#(type portA_addr, type portA_data, type portB_addr, type portB_data);
|
|
interface EBRPort#(portA_addr, portA_data) portA;
|
|
interface EBRPort#(portB_addr, portB_data) portB;
|
|
endinterface
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// Verilog import
|
|
//
|
|
// The raw primitive for EBR is called DP16KD. However, Lattice and
|
|
// Yosys both expose it with the I/O ports exploded out into
|
|
// individual bit signals, which is pretty horrible to plumb up here.
|
|
//
|
|
// Instead, ECP5_RAM.v defines a tiny Verilog wrapper, whose only
|
|
// purpose is to group those individual bit signals back into
|
|
// multi-bit ports that Bluespec can manipulate more elegantly.
|
|
//
|
|
// This wrapper exposes all the I/O ports with their maximum bit
|
|
// width, even though there is no configuration that can use all the
|
|
// bits. For example if you use all 14 address bits, you're only using
|
|
// 1 data bit (16384x1b configuration). If you're using all 18 bits of
|
|
// data, you're only using 10 address bits (1024x18b
|
|
// configuration). We do this because we want to drive unused signals
|
|
// to defined values, so we have to be able to see all of them.
|
|
//
|
|
// The exported wrapper modules defined further down translate these
|
|
// large raw ports into proper Bluespec types, and handle the
|
|
// necessary padding and truncation.
|
|
|
|
(* always_ready *)
|
|
interface V_EBRPort;
|
|
// Put starts an operation, if select's value matches the port's
|
|
// configured chip_select_addr.
|
|
method Action put(UInt#(3) select, Bool write, Bit#(14) address, Bit#(18) data);
|
|
// Read provides the EBR's output value. At this raw layer, read
|
|
// always returns a value, but that value is undefined unless a put
|
|
// which generates output happened N cycles prior, where N is the
|
|
// port's configured latency (see EBRPortConfig).
|
|
//
|
|
// It is the caller's responsibility to time reads correctly
|
|
// relative to puts.
|
|
method Bit#(18) read();
|
|
endinterface
|
|
|
|
interface V_EBR;
|
|
interface V_EBRPort portA;
|
|
interface V_EBRPort portB;
|
|
endinterface
|
|
|
|
// vEBRCoreInner instantiates a raw EBR primitive with the given
|
|
// configuration.
|
|
//
|
|
// The returned interface has maximally wide types on all I/O, and
|
|
// uses plain bit arrays. It also has no conditions on any methods,
|
|
// it's the caller's reponsibility to time method calls appropriately.
|
|
//
|
|
// Nothing should use this module directly, except for mkEBRCore
|
|
// below. mkEBRCore wraps the Verilog primitive in stronger types and
|
|
// handles configuration edge cases (detecting invalid configs, tying
|
|
// off unused ports), but otherwise presents the same "raw" primitive
|
|
// from a semantic perspective. Anything you can build using
|
|
// vMkEBRCore, you can build better with mkEBRCore.
|
|
import "BVI" ECP5_RAM =
|
|
module vMkEBRCore#(EBRPortConfig_Resolved cfgA,
|
|
EBRPortConfig_Resolved cfgB)
|
|
(V_EBR);
|
|
|
|
// EBRs are dual-port with independent clocks and resets on each
|
|
// port, so we need to be careful to map things correctly. Unset
|
|
// the default clock and reset entirely, so that the compiler
|
|
// complains loudly if we forget to explicitly specify the
|
|
// clocking/reset on a signal.
|
|
default_clock no_clock;
|
|
default_reset no_reset;
|
|
|
|
input_clock portA_clk(CLKA, (* unused *)CLKA_GATE) = cfgA.clk;
|
|
input_reset portA_rstN(RSTA) clocked_by(portA_clk) = cfgA.rstN;
|
|
|
|
input_clock portB_clk(CLKB, (* unused *)CLKB_GATE) = cfgB.clk;
|
|
input_reset portB_rstN(RSTB) clocked_by(portB_clk) = cfgB.rstN;
|
|
|
|
parameter DATA_WIDTH_A = cfgA.data_width;
|
|
parameter REGMODE_A = cfgA.register_output ? "OUTREG" : "NOREG";
|
|
parameter CSDECODE_A = cfgA.chip_select_addr_str;
|
|
parameter WRITEMODE_A = cfgA.write_mode_str;
|
|
|
|
parameter DATA_WIDTH_B = cfgB.data_width;
|
|
parameter REGMODE_B = cfgB.register_output ? "OUTREG" : "NOREG";
|
|
parameter CSDECODE_B = cfgB.chip_select_addr_str;
|
|
parameter WRITEMODE_B = cfgB.write_mode_str;
|
|
|
|
// The outputs of EBR ports also have an enable signal. It's
|
|
// unclear why you'd want to suppress the output of things you
|
|
// asked the memory to give you. Since I can't think of any use
|
|
// for them, leave them always enabled if the corresponding port
|
|
// is active.
|
|
port OCEA = cfgA.enabled;
|
|
port OCEB = cfgB.enabled;
|
|
|
|
interface V_EBRPort portA;
|
|
method put((*reg*)CSA, (*reg*)WEA, (*reg*)ADA, (*reg*)DIA) enable(CEA) clocked_by(portA_clk) reset_by(portA_rstN);
|
|
method DOA read() clocked_by(portA_clk) reset_by(portA_rstN);
|
|
endinterface
|
|
interface V_EBRPort portB;
|
|
method put((*reg*)CSB, (*reg*)WEB, (*reg*)ADB, (*reg*)DIB) enable(CEB) clocked_by(portB_clk) reset_by(portB_rstN);
|
|
method DOB read() clocked_by(portB_clk) reset_by(portB_rstN);
|
|
endinterface
|
|
|
|
// A quick crash course on Bluespec's scheduling instructions.
|
|
//
|
|
// Bluespec's fundamental property is that rule execution is
|
|
// serializable: all designs behave as if they execute a single
|
|
// rule at a time, in some order. In the actual hardware
|
|
// typically many rules execute in parallel on every cycle, but
|
|
// that's just an optimization: the observed behavior of the
|
|
// system must always be explainable by executing rules one at a
|
|
// time, where each rule sees the effects of all previously
|
|
// executed rules.
|
|
//
|
|
// When pulling Verilog modules into a Bluespec universe, the
|
|
// compiler must be told explicitly what orders of execution are
|
|
// valid, given the hardware's behavior. The canonical example
|
|
// is a read of a register's value and a write to the same
|
|
// register. Those two actions produce different system states
|
|
// depending on which one executes first: if read-before-write,
|
|
// the read sees the register's old value. In write-before-read,
|
|
// the read sees the updated value.
|
|
//
|
|
// That's why, if you go digging into the low level Bluespec
|
|
// definition of what a register is, you'll find a scheduling
|
|
// annotation which says that if a read and a write both want to
|
|
// happen (both methods are "enabled" in a clock cycle), the
|
|
// read must execute before the write. When translated into
|
|
// hardware, this matches familiar synchronous logic: on a given
|
|
// cycle, your logic sees the previous cycle's value, and all
|
|
// writes to registers happen at the "end" of the cycle.
|
|
//
|
|
// And so we come to the scheduling rules. Our annotations tell
|
|
// the compiler how the memory's methods can be called, if
|
|
// several of them are able to execute. Each scheduling
|
|
// annotation is written as:
|
|
//
|
|
// schedule <method(s) A> ORDERING <method(s) B>
|
|
//
|
|
// This means: assuming that method(s) A and method(s) B both
|
|
// want both execute, can both be executed without issues? And
|
|
// if yes, do they need to execute in a specific order?
|
|
//
|
|
// The orderings you can specify are:
|
|
//
|
|
// - C : "conflict". The scheduler must pick a single one of A
|
|
// or B to execute.
|
|
// - CF : "conflict-free". A and B can both execute, and the
|
|
// outcome is the same regardless of which executes first.
|
|
// - SB : "schedule before". A and B can both execute, but A
|
|
// must execute first to get correct results.
|
|
// - SBR: "schedule before (restricted)". Same as SB, but A
|
|
// and B must also execute from different rules.
|
|
//
|
|
// With that, here are the scheduling annotations for
|
|
// vMkEBRCore.
|
|
|
|
// TODO: why is portA.read CF portA.put? Shouldn't that be SB to
|
|
// match register semantics?
|
|
schedule (portA.read) CF (portA.read);
|
|
schedule (portA.read) SB (portA.put);
|
|
schedule (portA.put) C (portA.put);
|
|
schedule (portB.read) CF (portB.read);
|
|
schedule (portB.read) SB (portB.put);
|
|
schedule (portB.put) C (portB.put);
|
|
endmodule : vMkEBRCore
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// Exported modules
|
|
|
|
// mkEBRCore instantiates one EBR memory block with the given
|
|
// configuration.
|
|
//
|
|
// The returned ports have no implicit conditions. The caller is
|
|
// responsible for upholding the block's timing and synchronization
|
|
// requirements, following Lattice TN 02204.
|
|
//
|
|
// read() yields valid data 1 cycle after put() for ports configured
|
|
// with unregistered output, or 2 cycles for registered outputs. At
|
|
// all other times, the returned value is undefined.
|
|
//
|
|
// portA and portB must not concurrently write the same bits, or read
|
|
// bits while the other is writing them. The stored value in a
|
|
// write-write race is undefined, as is the read value in a write-read
|
|
// race.
|
|
module mkEBRCore#(EBRPortConfig cfgA,
|
|
EBRPortConfig cfgB)
|
|
(EBR#(addr_a, data_a, addr_b, data_b))
|
|
provisos (Bits#(addr_a, addr_sz_a),
|
|
Bits#(data_a, data_sz_a),
|
|
Bits#(addr_b, addr_sz_b),
|
|
Bits#(data_b, data_sz_b),
|
|
Add#(addr_a_pad, addr_sz_a, 14),
|
|
Add#(data_a_pad, data_sz_a, 18),
|
|
Add#(addr_b_pad, addr_sz_b, 14),
|
|
Add#(data_b_pad, data_sz_b, 18));
|
|
|
|
let defaultClk <- exposeCurrentClock;
|
|
let defaultRstN <- exposeCurrentReset;
|
|
let rcfgA = resolvePortCfg("mkEBRCore", "A", addr_a ' (?), data_a ' (?), cfgA, defaultClk, defaultRstN);
|
|
let rcfgB = resolvePortCfg("mkEBRCore", "B", addr_b ' (?), data_b ' (?), cfgB, defaultClk, defaultRstN);
|
|
|
|
let vEBR <- vMkEBRCore(rcfgA, rcfgB);
|
|
|
|
interface EBRPort portA;
|
|
method Action put(UInt#(3) chip_select, Bool write, addr_a address, data_a datain);
|
|
if (!rcfgA.enabled)
|
|
noAction;
|
|
else
|
|
vEBR.portA.put(chip_select,
|
|
write,
|
|
zeroExtend(pack(address)) << valueOf(addr_a_pad),
|
|
zeroExtend(pack(datain)));
|
|
endmethod
|
|
method data_a read();
|
|
if (!rcfgA.enabled)
|
|
return ?;
|
|
else
|
|
return unpack(truncate(vEBR.portA.read()));
|
|
endmethod
|
|
endinterface
|
|
|
|
interface EBRPort portB;
|
|
method Action put(UInt#(3) chip_select, Bool write, addr_b address, data_b datain);
|
|
if (!rcfgB.enabled)
|
|
noAction;
|
|
else
|
|
vEBR.portB.put(chip_select,
|
|
write,
|
|
zeroExtend(pack(address)) << valueOf(addr_b_pad),
|
|
zeroExtend(pack(datain)));
|
|
endmethod
|
|
method data_b read();
|
|
if (!rcfgB.enabled)
|
|
return ?;
|
|
else
|
|
return unpack(truncate(vEBR.portB.read()));
|
|
endmethod
|
|
endinterface
|
|
endmodule
|
|
|
|
// mkEBR instantiates one EBR memory block with the given
|
|
// configuration.
|
|
//
|
|
// This module includes flow control for reads, but unlike the
|
|
// standard library BRAM servers there is no flow control on puts. Put
|
|
// is always_ready, and read behaves like a Wire: the result of each
|
|
// put is available for a single cycle, and is lost if not read at
|
|
// that time.
|
|
module mkEBR#(EBRPortConfig cfgA,
|
|
EBRPortConfig cfgB)
|
|
(EBR#(addr_a, data_a, addr_b, data_b))
|
|
provisos (Bits#(addr_a, addr_sz_a),
|
|
Bits#(data_a, data_sz_a),
|
|
Bits#(addr_b, addr_sz_b),
|
|
Bits#(data_b, data_sz_b),
|
|
Add#(addr_a_pad, addr_sz_a, 14),
|
|
Add#(data_a_pad, data_sz_a, 18),
|
|
Add#(addr_b_pad, addr_sz_b, 14),
|
|
Add#(data_b_pad, data_sz_b, 18));
|
|
|
|
let defaultClk <- exposeCurrentClock;
|
|
let defaultRstN <- exposeCurrentReset;
|
|
let rcfgA = resolvePortCfg("mkEBR", "A", addr_a ' (?), data_a ' (?), cfgA, defaultClk, defaultRstN);
|
|
let rcfgB = resolvePortCfg("mkEBR", "B", addr_b ' (?), data_b ' (?), cfgB, defaultClk, defaultRstN);
|
|
|
|
let mem <- mkEBRCore(cfgA, cfgB);
|
|
|
|
DelayLine#(void) latencyA <- mkDelayLine(rcfgA.operation_latency, clocked_by(rcfgA.clk), reset_by(rcfgA.rstN));
|
|
DelayLine#(void) latencyB <- mkDelayLine(rcfgB.operation_latency, clocked_by(rcfgB.clk), reset_by(rcfgB.rstN));
|
|
|
|
interface EBRPort portA;
|
|
method Action put(UInt#(3) chip_select, Bool write, addr_a address, data_a datain);
|
|
mem.portA.put(chip_select, write, address, datain);
|
|
if (rcfgA.write_outputs_data || !write)
|
|
latencyA <= ?;
|
|
endmethod
|
|
method data_a read() if (rcfgA.enabled && latencyA.ready);
|
|
return mem.portA.read();
|
|
endmethod
|
|
endinterface
|
|
|
|
interface EBRPort portB;
|
|
method Action put(UInt#(3) chip_select, Bool write, addr_b address, data_b datain);
|
|
mem.portB.put(chip_select, write, address, datain);
|
|
if (rcfgB.write_outputs_data || !write)
|
|
latencyB <= ?;
|
|
endmethod
|
|
method data_b read() if (rcfgB.enabled && latencyB.ready);
|
|
return mem.portB.read();
|
|
endmethod
|
|
endinterface
|
|
endmodule : mkEBR
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// Utilities
|
|
//
|
|
// These are little helpers that I expected to find in the stdlib, but
|
|
// aren't there. Thankfully, they are easy to write by following the
|
|
// examples of similar helpers.
|
|
|
|
function WriteOnly#(a) discardingWriteOnly();
|
|
return (interface WriteOnly
|
|
method Action _write(a x);
|
|
noAction;
|
|
endmethod
|
|
endinterface);
|
|
endfunction
|
|
|
|
function WriteOnly#(a) regToWriteOnly(Reg#(a) r);
|
|
return (interface WriteOnly
|
|
method _write = r._write;
|
|
endinterface);
|
|
endfunction
|
|
|
|
function ReadOnly#(a) constToReadOnly(a x);
|
|
return (interface ReadOnly
|
|
method _read;
|
|
return x;
|
|
endmethod
|
|
endinterface);
|
|
endfunction
|
|
|
|
endpackage
|
|
|